
Executive Summary
July 13, 2020

This document is part of an ongoing series of informal discussions with the European
Commission’s Directorate‑General for Communications Networks, Content and Technology (DG
CONNECT), the European Union Agency for Cybersecurity (ENISA), the European
Telecommunications Standards Institute (ETSI), and browser vendors such as Apple, Google,
Microsoft, Mozilla, Opera, and Vivaldi.

This document collects concerns from Apple, Google, Microsoft, Mozilla, Opera, and Vivaldi
around a recently proposed use of Attribute Certificates (RFC 5755) to communicate Qualified
Website Authentication Certificates (QWACs), established by EU Regulation 910/2014 (the
eIDAS Regulation). Browser vendors are concerned that, as proposed, the use of Attribute
Certificates to communicate QWACs (hereafter called “ac-QWACs”) will encounter significant
interoperability concerns with existing software and which are highly likely to damage and harm
the security, privacy, and interoperability functions of these browser vendors’ products. An
alternative proposal for QWACs was previously put forward by browsers, called nt-QWACs, that
would entirely avoid these concerns, and thus remove barriers to the adoption and use of
QWACs within the Digital Single Market.

The concerns with ac-QWACs specifically, but which also generalize to other forms of Trust
Service Provider (TSP) mediated QWACs, such as the existing ETSI EN 319 412-1/412-2
approaches, are that such solutions are:

i. Incompatible with how browsers load web pages and resources; and
ii. Incompatible with how websites use and deploy TLS; and
iii. Incompatible with how users browse the web; and
iv. Not technologically neutral with current and future methods of establishing TLS; and
v. Problematic with respect to user privacy; and
vi. Inconsistent with the text of the Regulation and the stated requirements and goals.

These concerns are expanded on in greater detail within this document. The design of
nt-QWACs, as proposed by browsers, was specifically designed with these considerations in
mind, and on the basis of the stated purpose, goals, and requirements within the eIDAS
Regulation. Solutions such as ac-QWACs, as proposed, or tls-QWACs, as currently specified by
ETSI, represent significant barriers to adoption, interoperability, and use, while also greatly
jeopardizing the security of these products and their users, by unnecessarily restricting the
agility and ability to respond to security threats and evolving security improvements.



Background

Throughout the latter half of 2019, and continuing through 2020, representatives of major
browser manufacturers, including those of Apple, Google, Microsoft, Mozilla, Opera, and Vivaldi,
worked to establish a technical proposal regarding Qualified Website Authentication Certificates
(QWACs). This proposal was aimed at addressing the concerns shared by DG CONNECT and
ENISA regarding the limited uptake and interoperability of QWACs within these vendors’
respective products and trust frameworks. Building on the technological neutrality and
interoperability goals set forward by the eIDAS Regulation, this proposal explored how a small
adjustment to the specific technical profile of QWACs proposed by the ETSI ESI Technical
Committee could be made easier to use, obtain, and deploy by websites.

In March 2020, browser manufacturers provided a demonstration on how an unmodified
browser could consume and use such QWACs, called “nt-QWACs” to highlight their subtle
distinction from the existing ETSI ESI specification, and without relying on any third-party
services. During this meeting, ETSI ESI raised a concern that, despite the technological
neutrality of the nt-QWAC solution, it was perceived as inadequate for security, due to only
cryptographically binding organizational and legal identity to a website, and not to a specific
protocol, such as TLS, or to a specific communication channel using TLS. Browser
manufacturers expressed concern that ETSI ESI’s interpretation did not seem consistent with
Annex IV of the Regulation, nor would binding QWACs to TLS facilitate the goals of
interoperability and technological neutrality. As a follow-up item, ETSI ESI was to provide a
security analysis that explored the security properties needed of QWACs, in order to better
identify solutions that could meet those properties.

In a follow-up meeting of June 2020, ETSI ESI shared their position, which was that a
protocol-specific, technology-specific cryptographic binding was necessary under the
Regulation, but without stating the specific and necessary security requirements or goals to be
achieved. In addition, a demonstration based upon Attribute Certificates (RFC 5755) was
provided to browsers. This demonstration showed an Attribute Certificate, or ac-QWAC, that
included a binding to a specific TLS server certificate as one of the attributes. In order to
validate this certificate, the user was directed to a third-party service, which would validate the
ac-QWAC against the Trusted Services List, and then attempt to validate the cryptographic
binding from the perspective of this third-party service. The subsequent discussion following this
demonstration largely focused on concerns raised by browsers with respect to the cryptographic
binding of the ac-QWAC to the TLS certificate. The particular technique used to establish this
binding, which was represented as necessary by ETSI ESI, was seen by the browsers as
creating conflict with many of the objectives of technological neutrality, interoperability, ease of
deployment, ease of operation, privacy protection, and with the Regulation itself. As a follow-up
deliverable, browser vendors agreed to provide an explanation of these concerns, detailing how

https://archive.cabforum.org/pipermail/servercert-wg/2020-January/001555.html


TLS is used within their products, why the proposed ac-QWAC has significant limitations not
shared by nt-QWACs, and suggestions for how to address these concerns.

Incompatible with how browsers load web pages and resources
A common misconception with how browsers work is that the act of loading a URL, such as
“https://google.com”, is guaranteed to establish one and exactly one connection to that host.
When using TLS, as HTTPS does, it’s assumed that because there is a single connection, any
properties of that TLS connection can be assumed for the “website” at the URL. Unfortunately,
web browsers have not behaved like this since the very earliest days of the web, having
changed even before browsers like Netscape Navigator and Microsoft Internet Explorer were
even available.

A less common, but equally problematic assumption, is believing that even if there are multiple
connections to a host, such as for “https://google.com”, they will all share the same properties.

When a modern web browser loads a URL such as “https://google.com”, it goes through a
complex, sometimes vendor-specific, state machine. For example, the browser may examine a
cache of resources on disk or in memory. If it has a resource that was previously retrieved, and
still valid, it will load that resource, and its associated properties, from disk. The website is
generally in control of how long these resources are cached, and may have configured them to
be valid for hours, minutes, years at a time, and may even configure them to never expire or be
invalidated.

If a resource on disk isn’t available, the browser may attempt to establish a connection to the
server. If it was previously connected to the server, it may have one or more connections
existing within a “connection pool”, a cache of connections. These may have been established
mere seconds ago, or they might be long-lived, from minutes or even hours ago, depending on
the browser and the users’ activity. Each of these connections can be seen as fully independent:
there is no guarantee that all connections in a pool will share the same properties, such as
being to the same IP address or share the same certificate.

If the browser needs to establish a new connection, it will typically attempt to resolve the host
via DNS. The browser may make only a single DNS request, or it may make multiple requests in
parallel, for different record types. As IP addresses are returned, it may begin establishing
connections in parallel, “racing” them to see which connection will be fastest. The winner is the
connection that is used, but the other connections, to different IP addresses and potentially
using different protocols entirely, such as HTTP/2 or HTTP/3, are often returned to the
connection pool for subsequent use later.

Once the browser has established a connection, it will attempt the initial request. If, as in the
case of “http://google.com”, the browser receives a redirect from HTTP to HTTPS, it may repeat

https://google.com
https://google.com
https://google.com
https://en.wikipedia.org/wiki/Happy_Eyeballs
https://en.wikipedia.org/wiki/Happy_Eyeballs
http://google.com


this whole process again to a new host, establishing a new connection with new properties.
However, even if the redirect is to the same host, but a different URL, there’s no guarantee that
the connection used for the second URL will be the same as the first. This is because browsers,
after loading a URL, typically return a connection back to the connection pool. When the second
URL, for the same host, is loaded, there is no guarantee that it will get the same connection as
the first.

As the web page loads, the browser will begin to load subresources of the page. These are the
elements, such as images or stylesheets, that affect how the web page is displayed to the user.
Until certain subresources are loaded, the webpage often appears “blank”, and may simply
display an empty white page. Each of these subresources is referenced by URLs, and so have
all the same complexity as described above, repeated in a microcosm for each of the
subresources. Each of these subresources may be on different hosts, and each of these hosts
may have different certificates, and may be operated by different entities: content delivery
networks, authentication/single-sign-on providers, analytics, Javascript libraries or frameworks,
or any other number of partners that the website may partner with or delegate to. These
subresources may have been cached, and so have older certificates than the original URL, or if
the original URL was loaded from the cache, the subresources may have newer certificates.

If the original page makes use of a technology called inline frames, it’s possible to load entire
web pages within a web page, repeating all of these previously mentioned steps for loading, and
without any distinct URL bar or other user-facing display. The use of iframes is a common
pattern for enabling single sign-on or payments, including enabling compliance with the Revised
Payment Services Directive (PSD2), Directive (EU) 2015/2366. The use and appeal of inline
frames is precisely because they integrate with the “hosting” web page transparently, appearing
as if they were just another subresource, despite being operated by a third-party service
provider.

Modern technologies, such as WebSockets, Service Workers, Alt-Svc, and the HTTP/2 ORIGIN
frame, can all further affect and compound the complexity here, by altering what host or
connection a resource is loaded from, depending on when and how it’s loaded within a page.1

Similarly, modern web applications are able to make use of a wealth of persistence APIs, such
as cookies, Web Storage, IndexedDB, and the Cache API, that allow the page itself to store
data in a prevision session and load it within a future session. As with resource loading, these
data storage mechanisms rely upon the concept of the Origin, and without any consideration of
the certificate and/or connection properties.

1 For further information, many of these concepts are discussed in the 2013 book “High Performance
Browser Networking” by Ilya Grigorik, published by O’Reilly Media Inc. This book is available under a
Creative Commons license at https://hpbn.co/ , and in particular,
https://hpbn.co/primer-on-browser-networking/ discusses the disconnect between resources used for
websites and sockets.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://tools.ietf.org/html/rfc6455
https://w3c.github.io/ServiceWorker/
https://tools.ietf.org/html/rfc7838
https://tools.ietf.org/html/rfc8336
https://tools.ietf.org/html/rfc8336
https://en.wikipedia.org/wiki/Web_storage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://hpbn.co/
https://hpbn.co/primer-on-browser-networking/


All of this can happen before a single pixel is displayed to the user or the webpage is said to be
loaded. It is this complexity, which is necessary to support a rich Web application platform, that
has consistently resulted in browsers largely rejecting web technologies that attempt to build on
properties of the connection, because there is no single “the” connection to build on. The
certificate is an example of a property of a connection, as there is no guarantee that the
certificate used on one connection will be the same as on another connection, and that’s
explicitly not a goal that browsers have wanted to support or have developers assume.

The reason all of these technologies work, and web browsers are able to continue to innovate
and support rich, interoperable, interactive web applications, is that all of the Web’s security
technologies are not based on sockets, connections, or key pairs, and instead built on a concept
known as the Origin. The Origin is how web browsers establish security boundaries, and knows
the difference between “this” webpage and “that” webpage.

Overly simplified, for most URLs, the Origin is made up of three properties: the scheme (e.g.
“http” vs “https”), the host (e.g. “google.com”), and the port (such as 443, the default port for the
scheme “https”). If a resource is “same-origin” to the page, it’s considered as part of the same
security boundary, while if a resource is “cross-origin”, it’s treated as part of a separate security
boundary, and care is taken when loading. Despite the myriad of connections, hosts, and
certificates that were previously described, it is their Origin, which can generally be extracted
directly from their URL, that affects the page security.

When browsers say that “only the host matters” in a certificate, not the key within the certificate,
they are reflecting the fact that all of the webpage’s security and privacy properties are
computed based on the Origin, which only takes the hostname into consideration. As long as an
individual connection presents a certificate for that hostname, and a successful TLS handshake
occurs, any other properties of the certificate do not affect the security of the webpage.

Both tls-QWACs and ac-QWACs rely on the ability to bind a resource load to an individual TLS
connection and to a specific certificate, neither of which may reflect the current state of the web
server, due to the loading process mentioned previously. As such, this binding is fundamentally
incompatible with the actual loading mechanisms. As properties of connections, such as
certificates, do not affect the computation of the origin, the existence of a tls-QWAC or an
ac-QWAC does not affect the security or processing of the webpage and its Origin.

Similar technologies, like Extended Validation Certificates, are equally limited. The fact that
Extended Validation certificates do not affect the Origin has been why some browsers have
highlighted that such certificates do not meaningfully affect the security of a webpage. Due to
how browsers work and load resources, only things that affect the Origin can be said to
definitively and consistently affect the security of a webpage. Due to being bound to individual
connections, rather than affecting the Origin, tls-QWACs and ac-QWACs can thus be said to
suffer from the same issues noted by the security community that resulted from the introduction
of Extended Validation certificates.

https://html.spec.whatwg.org/multipage/origin.html
https://www.blackhat.com/html/bh-usa-09/bh-usa-09-archives.html#Sotirov


Changing how the Origin is computed is not a viable path forward, as it would involve
fundamentally rearchitecting how web browsers and web security works, in a
backwards-incompatible manner that would likely take decades. Incorporating these details into
the Origin is also non-trivial and unlikely to succeed. This is because the Origin needs to be able
to be determined in a connection-independent manner, using only the URL of the resource and
the context that the URL is requested (e.g. the page that’s requesting it, the type of HTML tag
being used), as the Origin affects how connections are established, and thus needs to be known
independent of the connection itself. This means integrating any changes to the Origin would
require introducing entirely new URLs to the webpage, and potentially replacing DNS altogether.

While there have been, at various times, proposals to attempt to surface certificate information
to web pages, e.g. via the Fetch API or the Resource Timing API, such proposals have been on
the basis of diagnostic logging functionality, because they cannot and do not affect the security
of a website itself, as they do not affect the Origin. Similarly, such APIs would expose a
non-trivial amount of users to significant privacy risks, such as persistent tracking by websites,
and thus even for diagnostic purposes represents a significant concern.

Absent such a significant and fundamental re-architecture of the Origin, which would redefine
and redesign all Web technologies, any connection-dependent relationship, such as binding a
QWAC to a certificate or TLS connection, provides no meaningful security to end users within
any of the existing web browsers.

Incompatible with how websites use and deploy TLS
Solutions such as ac-QWACs, or any other form of cryptographic attestation in which the TSP
makes the attestation, as suggested by ETSI ESI, are also incompatible with how modern
websites are used and deployed, because as currently proposed, they do not account for the
complexity present in the web today. As a consequence, such solutions would face significant,
potentially insurmountable, barriers to widespread adoption.

Modern websites may, at any given point in time, have dozens of certificates in use.
Coordinating global deployment across datacenters and points of presence is quite complex,
and so at any given moment, users may encounter a myriad of certificates, potentially even from
different CAs entirely, depending on what version of configuration a given server is running. For
example, at the time of writing this, Google has fifty certificates in use just for “www.google.com”,
each with their own key.

While this example only applies to a single domain name, this effect is amplified when
considering the Same Origin Policy, as discussed with how browsers operate. Websites
regularly establish new domains and subdomains, which help them establish different security
principals, much like modern operating systems use different user accounts and privileges. For
example, a site might have domain names like “website.example”, a sub-domain

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API


“img.website.example” hosted by Content Delivery Network (CDN) 1, a sub-domain
“fonts.website.example” hosted by a different CDN, and may introduce new subdomains like
“user1.website-users.example”. As best practice is to discourage wildcard certificates, each of
these domains will have their own certificate, each with their own certificate management
lifecycle, but all logically part of the same legal or natural identity.

While a solution might appear to allow expressing multiple certificates, it means that a website
deploying QWACs such as tls-QWACs or ac-QWACs would need to consult with and receive
approval from their TSP each time they wished to change or update their configuration. This is
because it would require obtaining a new tls-QWAC or ac-QWAC any time the website wished
to change or manage their certificates. This would be quite challenging, given that ETSI ESI’s
specifications prohibit QWACs from being approved automatically, and require two independent
approvers from the TSP to manually approve such issuance, due to ETSI ESI normatively
incorporating the EV Guidelines. This would greatly impair modern best practices, like agility, but
could also greatly hinder how a website is able to respond to a security incident, by requiring the
TSP to approve before they implement a security fix to protect users.

For sites that do not have such global presences like Google, they may choose to let their CDN
or hosting provider manage TLS for them. These providers automatically handle issuing and
maintaining certificates for the website, making it easier and hassle-free to enable TLS. For
such websites, they do not manage certificates themselves, so they do not know when or how
their certificates will be rotated. While they are in full control of their domain, and their content,
their service provider handles certificates for them. tls-QWACs and ac-QWACs are incompatible
with such deployments, because they require that the website operator directly manage
certificates themselves, at greater cost and complexity to their organization.

This constant changing of certificates emphasizes the importance that any cryptographic
binding should ideally be oriented around the domain name, which is immune from such
changes, rather than to the certificate or TLS. If a cryptographic binding to certificates is
pursued, then as discussed in greater detail further within this document, such a binding needs
to be manageable by the website itself, rather than the TSP. This ensures that website operators
are able to manage and deploy certificates as necessary, enabling them to respond to security
needs without delay, and allowing them to pursue more secure deployment options than purely
self-managed web hosting. Similarly, any binding to a certificate fundamentally needs to
consider multiple bindings and certificates, which change frequently and sometimes
on-demand/instantaneously.

Incompatible with how users browse the Web
It’s widely understood that, for a non-trivial portion of the Web, users’ browsing activity is
intercepted and scanned as part of normal operation. For users on home computers, this is
often through one or more antivirus programs, which perform TLS interception and modification,
in order to protect users from viruses and other threats the vendor may determine. For users on



corporate computers, this may be done by a local enterprise administrator in order to provide
similar traffic inspection and management capabilities to the organization. A common
explanation by businesses is that they use such capability to detect and prevent malware and
other forms of data-loss from exfiltrating their network.

While such products can introduce a host of security concerns on their own, they are still widely
used and deployed. After the IETF rejected formalizing such protocols, due to the security harm
they pose, the ETSI CYBER TC took such work on, formalizing protocols such as the Middlebox
Security Protocol used to intercept and manipulate network traffic. While unfortunate for
security, this demonstrates the perceived need within some industries for the ability to perform
such traffic inspection and manipulation.

Unfortunately, cryptographic bindings to certificates or TLS are fundamentally at odds with such
solutions, as they rely on altering the cryptographic properties of the connection. Solutions such
as tls-QWACs or ac-QWACs are fundamentally incompatible with the vast majority of home and
enterprise antivirus solutions, due to their integrated TLS interception capabilities, which break
such certificates. While it may be possible to devise a protocol to exchange this information,
between the middlebox and the client browser, such solutions are measured by years of
standardization and adoption by vendors, followed by more years of adoption by users slowly
upgrading to products that might support this hypothetical protocol. In the interim, websites
would be unable to leverage the added validation provided by ac-QWACs or tls-QWACs.

By contrast, the design of nt-QWACs considered this use case as part of the rationale for
limiting the cryptographic binding to the origin. By emphasizing the authentication of the domain
and the entity operating the domain, the design enables users to be in control of their network
activity, inspect it or otherwise enforce security requirements, such as on-the-fly phishing
protection, while still being confident about the entity operating the domain.

Not technologically neutral
A significant challenge with ac-QWACs, as well as that of tls-QWACs, is that they are not
technologically neutral in how they provide information about the operator of a website. Rather
than providing information about the genuine and legitimate entity of a website, as represented
by an Origin, the current implementation of tls-QWACs and the proposed ac-QWACs would be
limited to only providing that information if the TLS protocol is used. This limits their ability to
work with existing technologies, including alternative uses of TLS, as well as limits their ability to
evolve and adapt to new technologies that may replace TLS. It also prevents a broader adoption
of QWACs from being adopted in environments that could benefit from the added information,
but do not use TLS.

An example of an existing technology that tls-QWACs impede on, and which ac-QWACs are
incompatible with, is that of DANE TLSA. DANE TLSA can be used to securely establish a TLS
connection to a website without the use of certificates at all. Unfortunately, tls-QWACs prohibit

https://www.us-cert.gov/ncas/alerts/TA17-075A
https://tools.ietf.org/html/rfc6698


this method of connecting to a domain, because they necessitate the use of certificate-based
key agreement, and ac-QWACs are incompatible with it. Ideally, QWACs would be agnostic
about whether or not the TLS connection itself uses certificates to establish acceptable
symmetric keys, and instead focus on providing information about the domain itself.

As proposed, both ac-QWACs and tls-QWACs only work with protocols involving TLS. This
greatly limits their ability to be used in other protocols where such information would be useful,
such as SMTP. Although SMTP can use TLS, SMTP may traverse multiple Mail Transfer Agents
(MTAs) before making it to the actual recipient’s mail server. As a result, forms of TLS
authentication, such as TLS mutual authentication, are incapable of being used; or, at least, not
without restricting SMTP to unscalable direct communication between the sender MTA and
recipient MTA.

Rather than use TLS mutual authentication, SMTP servers frequently use DomainKeys
Identified Mail (DKIM), which is based within DNS itself, similar to DANE. DKIM is used to
authenticate and validate the original sender domain of an email, and can be used in
hop-by-hop validation and by the final recipient MTA. Solutions like nt-QWACs are able to
interoperate with such technologies, because they are associated with domains, like DKIM,
rather than certificates. This technological neutrality can enable greater confidence in email, and
reduce spam and misclassification, by allowing “sender reputation” to be associated with legal
entities behind the domain names, rather than just the domain names as often done today. Such
use cases cannot be met with tls-QWACs or ac-QWACs without significant changes to how
SMTP servers operate, in ways that would greatly impair global email delivery. However,
nt-QWACs, by being technologically neutral, are able to easily integrate with technologies like
SMTP and DKIM, providing greater confidence and more reliable mail delivery.

Problematic to User Privacy
While the privacy issues with the use of eSignature certificates on the Web are well
documented, solutions such as ac-QWACs also pose their own form of privacy risk. As
discussed in the context of browser incompatibility, browsers intentionally separate out the
relationship between sockets/connections and resources/websites. This fundamental
architecture split makes it difficult or impossible for a website to determine information about the
connection the user used to fetch one or more resources, and thus, makes it impossible to
validate any per-connection/per-certificate cryptographic binding that might be present. While
the browser incompatibility discussion explores why it is a fundamental architectural necessity to
avoid exposing connection-specific information, this incompatibility also leads to privacy issues
for users if ac-QWACs are deployed.

As presented as part of the Informal Workshop in June 2020, in order to validate ac-QWACs, a
website must reveal a user’s browsing activity to a third-party validation service, in order for that
third-party validation service to fetch and validate the ac-QWAC, as well as connect to the
server and validate the binding. Beyond this external validation serving no security purpose, as

https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail


there is no way to guarantee that the third-party service’s view of the server’s certificate is
aligned with any properties of any of the user’s connections, past or present, it also represents a
significant privacy issue.

This privacy issue is not one that can be solved purely by policy alone. For example, even if the
third-party were to commit to not record or retain any records of users’ browsing activity, the
mere act of transmitting this information is largely indistinguishable from a privacy-problematic
advertising technique known as “URL decoration” or “link decoration”. As browsers continue to
compete in areas of user privacy, steps are being taken to detect and attempt to prohibit “link
decoration” from functioning at all.

Solutions like ac-QWACs, due to their per-connection/per-certificate cryptographic binding,
inherently rely on this, and thus may soon find themselves incompatible with modern web
browsers. However, solutions that limit the cryptographic bindings to the Origin, such as
nt-QWACs, can still function. This is because nt-QWACs supports the delivery of all of the
necessary validation information (e.g. OCSP responses, trust lists, etc) by the Origin itself,
avoiding the need to involve any third-parties at all or reveal any browsing activity of the user,
and without any modifications or changes to the privacy or security behaviors of modern
browsers.

Unfortunately, the necessity for third-party involvement is also the result of protections browsers
take with respect to user privacy. It is not possible to verify such a binding in JavaScript itself,
because information about a connection is not exposed to a web page in order to protect user
privacy. Although deprecated technologies like Flash previously allowed such inspection, which
enabled useful academic research and attempts to classify security threats, it also provided a
ready channel for fingerprinting and identifying users, and is now actively prohibited. Further, as
discussed in how browsers work, exposing certificate information does not match how browsers
manage and expose requests and sockets to web pages.

Such information is, for the most part, also not available to extensions to the browser that the
user may install. Although at least one browser provides this information, other browsers have
so far declined to do so, on the basis that exposing such APIs may represent more patterns for
abuse than legitimate use, and undermine the security, agility, and privacy of users.

As a consequence, there is no interoperable way, either within a webpage or within a web
browser extension, to access and/or validate any per-connection/per-certificate cryptographic
binding that may exist. These choices are guided by emphasizing user privacy, including
keeping local network information private from servers, which can use such information to
identify or track users, or to coerce them into otherwise problematic practices, such as detecting
and disabling anti-virus.

https://digiday.com/marketing/wtf-link-decoration/
https://webkit.org/blog/9521/intelligent-tracking-prevention-2-3/
https://www.linshunghuang.com/papers/mitm.pdf
https://www.facebook.com/notes/protect-the-graph/windows-ssl-interception-gone-wild/1570074729899339/


Inconsistent with the Regulation
Whether or not an Origin-based cryptographic binding is sufficient ultimately depends on the
problem that QWACs are trying to address. As has been suggested by members of ETSI ESI, a
cryptographic binding to the connection or protocol is viewed as necessary to fulfill the
obligations of the eIDAS Regulation. However, that conclusion seems at odds with the text of
the Regulation. Combined with the myriad concerns above that demonstrate how such
cryptographic bindings fail to provide any additional assurance or utility to websites, pursuit of a
cryptographic binding to a connection or TLS certificate presents a seemingly unnecessary
complication that only serves to make deploying QWACs harder.

With respect to the objectives of QWACs, Recital 64 of the Regulation sets forth the objective of
QWACs as being that “by which a visitor to a website can be assured that there is a genuine
and legitimate entity standing behind the website.” Further, Recital 64 notes that, among other
things, the Regulation “should not impede the use of other means or methods to authenticate a
website not falling under this Regulation”. In the context of Recital 64, authentication of a
website is a means of associating a natural or legal entity with a website. As noted in the
discussion of how browser technology works, a website is defined by its Origin; that is, the
scheme, host, and port.

The precise requirements for website authentication certificates, that is, those that associate a
legal entity with a scheme, host, and optional port, are laid forth in Annex IV of the Regulation.
Compared to Annex I and Annex III, Annex IV does not necessitate the inclusion of electronic
signature validation data. Electronic signature validation data is the means by which a message
sent to a relying party, such as a signed document or, in the case of TLS, a CertificateVerify
protocol message, can be tied back to the overall certificate. Annex IV only requires the
inclusion of the domain name(s) operated by the natural or legal person.

In this regard, the Parliament and Council have shown excellent foresight in ensuring the
technological neutrality of QWACs, and ensured that all of the information necessary and
sufficient to authenticate a website (i.e. a domain name) to a legal or natural entity is present. It
was to this end that nt-QWACs were proposed, based on a fulfillment of the Annex IV
requirements as written, and in line with how web browsers and certificate consumers function.

Alternative Cryptographic Binding Approaches
Although these many issues are systemic, and thus any form of cryptographic binding to
certificates significantly reduces the opportunity for adoption of QWACs, there are still better
alternatives than the proposal set forth by ac-QWACs.

Of the many limitations of ac-QWACs, the biggest is that it requires the TSP to mediate every
cryptographic binding to a certificate, issuing a new ac-QWAC whenever a TLS certificate or key



changes changes. As this design requires the TSP issue a new ac-QWAC each time the TLS
information changes, it’s equivalent to requiring TSPs to issue a new certificate each time a
Subscriber wants to sign a document or e-mail. As discussed in the context of how modern and
secure websites are administered, the ideal process is one highly automated and transparent to
the website operator, which is the opposite of what ac-QWACs propose.

Solutions like electronic seals and signatures work by granting a Subscriber a signing certificate,
and allowing them to sign whatever messages or documents they wish to sign, without needing
to involve the TSP once the initial certificate has been issued. The same design is applicable
here: rather than having the TSP perform the cryptographic binding between the QWAC and the
TLS certificate, allow the Subscriber to establish the binding, the same as they do when signing
documents or e-mail.

This design is a significant improvement over the existing ac-QWACs, because it removes the
need to involve a third-party, the TSP, when managing websites, domains, and business
relationships like CDNs, all of which can affect the certificates involved and thus necessitate
new ac-QWACs. This design reduces complexity for Subscribers in one dimension, by removing
the need to interact with and seek the multi-party approval for configuration change of a
website. By reducing this complexity and dependency on third-parties, it removes a critical
barrier to the adoption of QWACs present in tls-QWACs and ac-QWACs. However, it should be
noted that it also introduces new challenges, in that Subscribers and Relying Parties will need to
manage some of this complexity directly themselves. While these challenges are less than the
proposed solutions, they may still represent an insurmountable barrier that discourages the
adoption of QWACs, as a result of the cryptographic binding to individual certificates and/or
keys.

Determining what data/information needs to be signed depends on identifying the security
properties desired. It is difficult to make collaborative progress in the absence of a well-defined
security analysis that explains the goals of QWACs, and if they are intended to be used beyond
the scope of the Regulation’s stated purpose of binding identity information to a website/domain.
Without such an analysis, as had previously been requested from ETSI ESI, it makes it difficult
to find common understanding and ensure that the analysis accurately reflects how websites
operate, and to explore whether the goals and desired properties are even achievable with web
technologies. For example, in the presentation of ac-QWACs, the binding was to a single
certificate. However, as demonstrated above, such a binding is insufficient and does not
interoperate with web technologies, due to the plethora of certificates involved, thus it’s
necessary to imagine the binding is to multiple certificates.

In this model, a cryptographic binding could be as easy as having a Subscriber sign the
DER-encoded representation of the following ASN.1 pseudo-code:

Certificates ::= SET OF Certificate

https://tools.ietf.org/html/rfc5280#section-4.1


cryptographic-QWAC-tbs ::= SEQUENCE {
certificates [1] Certificates OPTIONAL
...

}
cryptographic-QWAC-data ::= SIGNED{cryptographic-QWAC-tbs}

In this example, the holder of the QWAC (e.g. the website operator) produces such structures,
asserting what data is to be signed, similar to how CAdES provides structure for how to sign
CMS-based documents.

The signature, along with the structure itself, could be provided at the previously-discussed
`/.well-known/eidas` URL, along with the QWAC itself and any necessary supporting
information, such as server-provided OCSP responses. A validating client could then extract this
information, validate the nt-QWAC, and validate the signature over the
cryptographic-QWAC-tbs. This still provides a cryptographic binding to a TLS certificate, but
ensures that the website operator is able to perform the cryptographic binding themselves,
without needing to involve the TSP.

The TSP would still be responsible for validating the domain names, as stated within Annex IV
of the Regulation, but is otherwise wholly independent from how the Subscriber uses and
manages this certificate for their domain. The cryptographic properties of the TLS certificate, or
even how the certificate was validated, would be entirely orthogonal and unrelated to the
QWAC. This is because a client supporting such a cryptographic binding would only validate the
QWAC successfully if the domain being accessed was present within the QWAC, in addition to
validating the signature over that cryptographic binding. If the QWAC was issued to a legitimate
organization, they would only sign such bindings for their legitimate certificates, preventing any
opportunity for misuse or confusion.

While this design demonstrates a more meaningful and alternative approach to cryptographic
binding to certificates that could remove some of the identified barriers to adoption, it still
presents fundamental and systemic issues with respect to privacy and how web technologies
work. Thus, although this design can be said to reduce the costs, compared to those of
ac-QWACs or tls-QWACs, the operational costs and complexities that remain may still represent
an insurmountable barrier to widespread adoption. It is presented to emphasize that alternative
designs do exist without as many of the problems of ac-QWACs or tls-QWACs.

Revisiting nt-QWACs
The approach of nt-QWACs, which avoids all of the limitations discussed within this document,
thus represents the best opportunity to promote and encourage the widespread adoption of
QWACs within the EU, and for which no compelling equivalent alternative has been identified.

https://www.etsi.org/deliver/etsi_en/319100_319199/31912201/01.01.01_60/en_31912201v010101p.pdf


The proposed ac-QWAC design, which rests on cryptographic binding of TLS certificates, is
fundamentally limited in the technology it can support, fails to interact with the overall set of web
technologies, and runs the risk of serious regressions in user privacy that may cause them to
fail to work in browsers within the next several years.

The existing tls-QWAC design has already been addressed in previous replies. It faces even
greater fundamental challenges to security and agility for web pages, creates greater costs to
TSPs, and may evolve in directions that are fundamentally irreconcilable with browser trust
stores.

The proposed nt-QWAC design manages to avoid all of these limitations, through the provision
of a strong cryptographic binding to a domain or Origin, rather than a certificate. Although it is
still a rough sketch of the underlying technologies, it represents a more foundational approach
to providing strong assurance between a website, as represented by a domain name, and the
natural or legal entity that may be operating that. It reflects the challenging lessons learned in
the introduction, use, and management of OV and EV certificates, while also representing a
globally-neutral, viable, interoperable path forward that minimizes the need for any changes: by
TSPs, by website operators, and by software vendors.

If the goal is to ensure robust validation of website identity, as reflected by the domain name,
nt-QWACs represent the most viable path identified towards promoting and encouraging their
adoption. While alternatives may exist, the fundamental architectural and operational challenges
identified in this document suggest that any equally-viable alternative to nt-QWACs will need to
largely adopt a similar approach of eschewing a cryptographic binding to individual certificates,
and focus on domains and origins.

Note that the proposal of nt-QWACs is done within the context of the Regulation and the
requirements set forth by Annex IV. The requirement within Annex IV to include all of an
organizations’ domain names within a QWAC, and/or to require an organization to obtain
multiple QWACs for their domain names, still represents a significant challenge towards the
promotion of QWACs and towards globally-interoperable solutions. This is due to the fact that,
within the realm of digital services, domain names are constantly changing, reflecting different
operational, product, marketing, branding, business, or security needs. As currently specified,
organizations are severely limited in their ability to respond to such changes within the digital
space.

In considering further updates to the eIDAS Regulation, one element worth considering is
whether or not the explicit inclusion within the certificate, as set forth by Annex IV (e), is strictly
necessary, or whether it may be sufficient to achieve the same effect by allowing the domain
name to be expressed as part of the creation data of an electronic signature or seal. By treating
the domain name as part of the creation data, much like individual documents that an
organization may sign are done, it becomes possible to still achieve the constitutive effect and
legal certainty, by uniquely identifying the signer, but with greater ease of use. Rather than



requiring the provision of new certificates, existing electronic seal or signature certificates could
be used to “self-certify”, with legal effect, their possession or operation of particular domains.
While fuller technical proposals are outside the scope of this individual document, many of the
lessons and challenges highlighted by this document extend beyond individual TLS connections
and certificates, and apply to domains as well. The current requirements for QWACs, as set
forth in Annex IV, thus represent additional barriers that otherwise don’t exist with respect to
electronic seals or signatures, which may explain some of the barriers to adoption both by
implementing software vendors and organizations.


